![]() |
I was wondering what prime numbers would look like in binary format. So, I wrote this little Python script prime.py:
def int2bin(n):
return ' '.join('.#'[int(c)] for c in bin(n)[2:])
def print_bin_centered(s, w):
print int2bin(s).center(w).rstrip()
def is_prime(n):
if n < 2: return False
if n == 2: return True
if n % 2 == 0: return False
for i in range(3, int(n ** 0.5) + 1, 2):
if n % i == 0: return False
return True
print_bin_centered(2, 15)
for i in range(3, 256, 2):
if is_prime(i):
print_bin_centered(i, 15)
The output is a nicely formatted ASCII interpretation prime.txt:
# .
# #
# . #
# # #
# . # #
# # . #
# . . . #
# . . # #
# . # # #
# # # . #
# # # # #
# . . # . #
# . # . . #
# . # . # #
# . # # # #
# # . # . #
# # # . # #
# # # # . #
# . . . . # #
# . . . # # #
# . . # . . #
# . . # # # #
# . # . . # #
# . # # . . #
# # . . . . #
# # . . # . #
# # . . # # #
# # . # . # #
# # . # # . #
# # # . . . #
# # # # # # #
# . . . . . # #
# . . . # . . #
# . . . # . # #
# . . # . # . #
# . . # . # # #
# . . # # # . #
# . # . . . # #
# . # . . # # #
# . # . # # . #
# . # # . . # #
# . # # . # . #
# . # # # # # #
# # . . . . . #
# # . . . # . #
# # . . . # # #
# # . # . . # #
# # . # # # # #
# # # . . . # #
# # # . . # . #
# # # . # . . #
# # # . # # # #
# # # # . . . #
# # # # # . # #
I just did a screen shot of the output, loaded it in Photoshop, and ran a “Chalk & Charcoal” Filter. |